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ABSTRACT

Variational Autoencoders (VAEs) are essential for large-scale audio

tasks like diffusion-based generation. However, existing open-

source models often neglect auditory perceptual aspects during

training, leading to weaknesses in phase accuracy and stereophonic

spatial representation. To address these challenges, we propose

ϵar-VAE, an open-source music signal reconstruction model that

rethinks and optimizes the VAE training paradigm. Our contri-

butions are threefold: (i) A K-weighting perceptual filter applied

prior to loss calculation to align the objective with auditory per-

ception. (ii) Two novel phase losses: a Correlation Loss for stereo

coherence, and a Phase Loss using its derivatives—Instantaneous

Frequency and Group Delay—for precision. (iii) A new spectral

supervision paradigm where magnitude is supervised by all four

MSLR (Mid/Side/Left/Right) components, while phase is super-

vised only by the LR components. Experiments show ϵar-VAE

at 44.1kHz substantially outperforms leading open-source models

across diverse metrics, showing particular strength in reconstructing

high-frequency harmonics and the spatial characteristics.

Index Terms— VAE, Music, Phase, Perceptual Weighting

1. INTRODUCTION

Achieving perfect, perceptually lossless reconstruction of complex

audio signals like music remains a central challenge in audio engi-

neering and machine learning. High-fidelity audio Variational Au-

toencoders (VAEs) [1] are foundational reconstructive components

for many downstream tasks, which fundamentally differs from that

of traditional generative VAEs like MusicVAE [2]. While the lat-

ter prioritizes the generation of semantically authentic novel content,

the former aims to compress and decompress the original signal loss-

lessly. To achieve this, the model prioritize perceptually significant

details and discarding imperceptible information. This process re-

lies heavily on psychoacoustic principles, such as utilizing percep-

tual weighting curves like A-weighting or K-weighting, to model the

frequency-dependent sensitivity of human hearing. However, mod-

ern audio VAE models fail to integrate such fine-grained perceptual

weighting strategies into their training paradigms.

Furthermore, the reconstruction of high-quality music requires

the accurate modelling of both phase and spatial information. Spa-

tial information, often parameterized by the Mid/Side (M/S) decom-

position, is critical for accurately rendering the stereo image. Con-

currently, audio transients and clarity are determined not by the ab-

solute phase of Short-time Fourier Transform (STFT) bins, but by

their partial derivatives: Instantaneous Frequency (IF) across time

and Group Delay (GD) across frequency. However, existing open-

source models lack effective mechanisms to supervise these critical

phase derivatives and fail to fully leverage the M/S representation

for spatial reconstruction, which leads to audible artifacts, such as

transient smearing and an inaccurate stereo image, limiting their use

in professional applications.
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Fig. 1. Architecture of ϵar-VAE

To address these shortcomings, we introduce ϵar-VAE, an open-

source VAE model optimized for high-fidelity music reconstruction.

Our model incorporates a K-weighting perceptual filter, which we

demonstrate is psychoacoustically better suited for music signals

than A-weighting. To ensure phase coherence, we propose novel

loss functions that implicitly optimize the phase performance by su-

pervising its derivatives (IF & GD). Additionally, we apply the re-

construction loss with a new Mid/Side/Left/Right (MSLR) weight-

ing scheme to maximize the preservation of both spatial and spectral

details. Through these targeted designs, ϵar-VAE achieves state-of-

the-art reconstruction performance across multiple objective evalu-

ations, setting a new benchmark for open-source high-fidelity audio

VAEs.

We summarize our contributions as follows: Firstly, we analyse

and integrate the K-weighting filter into the VAE training pipeline,

aligning the reconstruction objective with psychoacoustics of mu-

sic perception, in contrast to the commonly A-weighting. Secondly,

we propose novel phase-aware loss functions that supervise phase

derivatives to implicitly model critical phase differences, thereby

enhancing transient clarity and phase coherence. Thirdly, we in-

troduce a novel supervision strategy that separately constrains mag-

nitude and phase, employing all MSLR components for magnitude

reconstruction while using only LR to ensure phase coherence.

Now the codes, model weights and examples are available now1.

2. RELATED WORK

While traditional generative VAEs [3] utilize a Kullback-Leibler

(KL) divergence loss to enforce a continuous Gaussian prior for

generation, the reconstruction task prioritizes the model’s ability to

faithfully compress and restore signals, which have shifted towards

discrete quantized representations. This approach, pioneered by

VQ-VAE [4] and now standard in neural audio codecs like EnCodec

1https://eps-acoustic-revolution-lab.github.io/

EAR_VAE/

https://eps-acoustic-revolution-lab.github.io/EAR_VAE/
https://eps-acoustic-revolution-lab.github.io/EAR_VAE/


[5] and DAC [6], excels at achieving high compression ratios. To en-

hance the perceptual quality of the decoded audio, these frameworks

often incorporate a powerful adversarial component, leveraging dis-

criminators from vocoders like MelGAN [7] and HiFi-GAN [8].

Despite their success, the inherent information loss from quantiz-

ing remains a fundamental limitation, as subtle details crucial for

reconstruction can be discarded at the bottleneck.

In contrast, the approach revisiting continuous latent represen-

tations offers a potentially higher-fidelity pathway for reconstruc-

tion. The VAE model from Stable-Audio-Open (SAO) [1] stands as a

prominent example of this approach, employing a VAE-GAN frame-

work with adversarial loss and a down-weighted KL divergence to

learn a continuous representation at a high compression rate.

3. ϵar-VAE

Our model, inspired by the VAE architecture of SAO, is a partially

convolutional VAE complemented by transformer-based bottleneck

layers, trained with a composite adversarial objective. As shown in

figure 1, the overall architecture consists of a traditional VAE gener-

ator and a powerful time-frequency domain discriminator. The gen-

erator encodes the input waveform into a latent representation and

then decodes it back into a waveform, while the discriminator dis-

tinguishes audios between real and reconstructed version, thereby

guiding the generator to produce higher-fidelity output.

3.1. Generator

Our generator employs an encoder-decoder architecture featuring

several key designs optimized for music reconstruction. The encoder

utilizes a series of strided convolutional blocks with the SnakeBeta

activation function [9], which outperforms alternatives such as ELU

in our experiment. The decoder is designed asymmetrically: it mir-

rors the encoder’s convolutional structure using transposed convo-

lutions for upsampling but also incorporates a powerful transformer

module with RoPE position embeddings [10] on the decoding path.

This asymmetric design delegates local feature extraction to the effi-

cient encoder, while the decoder’s transformers model global depen-

dencies, yielding superior performance over symmetric architectures

like Mimi [11]. We selected transposed convolutions rather than

upsampling-plus-convolution because the former preserves greater

signal energy and perceptual loudness, which is more significant

than slightly higher high-frequency clarity offered by the latter. Fi-

nally, all convolutional layers are weight-normalized [1] for training

stability.

3.2. Discriminator

For adversarial training, we employ a Multi-Resolution STFT Dis-

criminator (MR-STFTD) as MSD, inspired by Encodec [5]. This

approach assesses the signal across various STFT resolutions, en-

abling it to detect a wide range of artifacts from coarse spectral errors

to fine-grained phase inconsistencies. Notably, we omit the Multi-

Period Discriminator (MPD). Our experiments show that MPD in-

troduces spatial positioning artifacts in the stereo field, which we at-

tribute to its fixed periodic analysis being ill-suited for the complex,

inconstant rhythms of music. In contrast, a single MSD provides

robust supervision without introducing such spatial distortions.

While some works like BigVGAN [9] apply the complementary

MSD in Constant-Q Transform (CQT) representation, we find this

approach degrades the VAE’s ability to represent music. As shown

Fig. 2. Energy-based frequency response comparison between CQT

and STFT of a musical excerpt.

in figure 2, CQT overemphasizes low-to-mid frequency melodic fea-

tures, leading to the lack of high-frequency harmonics, whereas the

STFT provides a more balanced and suitable frequency response for

our model.

3.3. Loss functions

Multi-Scale Log-Magnitude Loss To guide the generator’s spec-

tral amplitude reconstruction, we adopt the multiscale STFT loss

formulation from EnCodec [5]. This loss, denoted as Lstft−mag,

computes the L1 distance between the logarithmic magnitudes of the

predicted and target spectrograms over a set of different STFT res-

olutions, effectively capturing both coarse harmonic structures and

fine temporal details.

Feature-Map Loss We also employ the feature-matching loss

from EnCodec [5] to enhance perceptual quality. This loss, Lfmap,

minimizes the L1 distance between the intermediate feature maps

extracted from the discriminator’s layers for the ground-truth and

generated audio.

Adversarial Loss We employ the least-squares GAN objec-

tive from BigVGAN [9] for adversarial training, defining the gener-

ator loss LAdv(G) and the discriminator loss LAdv(D).
KL Loss We regularize the latent space using a Kullback-

Leibler (KL) divergence loss, which aligns the posterior distribution

q(z|x) with a standard normal prior N (0, I) to promote a continu-

ous and well-structured representation.

Correlation Loss Inspired by music production metrics, our

Correlation Loss directly penalizes phase deviations between the

ground truth spectrogram S and its reconstruction Ŝ is defined as:

Lcorr = 1−
∑

Re





ŜS
∣

∣

∣Ŝ
∣

∣

∣ |S|+ ε



 , (1)

where the term within the summation normalizes the cross-power

spectrum, simplifying to the cosine of the phase difference between

the signals, cos(ϕŜ − ϕS). Minimizing this loss thus encourages

perfect phase coherence.

Phase Loss Phase instability often introduces “electrical

buzz” artifacts. To mitigate this, our Phase Loss constrains the

phase’s first-order partial derivatives: Instantaneous Frequency (IF)

and Group Delay (GD). These derivatives are computed via finite

differences on the phase ϕ = arg(S) and ϕ̂ = arg(Ŝ):

{

IF(ϕ)t = ϕt+1 − ϕt,

GD(ϕ)f = −(ϕf+1 − ϕf ),
(2)

where the subscripts t and f denote the time and frequency dimen-

sions, respectively. All phase differences are computed modulo 2π
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Fig. 3. K-weighting vs. A-weighting Curve

to resolve the discontinuity at the ±π boundary. The total loss pe-

nalizes the L1 norm between the ground-truth and estimated deriva-

tives, to optimize phase coherence in a more stable and perceptually

relevant manner than direct phase supervision.

K-Weighting Curve K-weighting, originating from ITU-R

BS.1770 [12] loudness measurement standards, which is widely ap-

plied in music production, is designed to approximate the frequency-

dependent sensitivity of the human ear in 3. This cascaded filter

accentuates mid and high frequency bands where human hearing is

most sensitive, while attenuating lower frequencies. By pre-filtering

the signal with HK(z), we ensure that reconstruction losses are

evaluated in a perceptually relevant domain.

M-S-L-R Split Inspired from the music mixing process and

SAO [1], we also apply the stereophonic split in two different rep-

resentations, Left-Right (SL, SR) and Mid-Side (SM , SS), where

mid is defined as (SL + SR)/2, side (SL − SR)/2. For different

supervision attributes, we take certain combinations of the generator

and the discriminator separately:

Total Loss The complete training objective consists of two

parts: one for the generator LG and one for the discriminator LD .

These are optimized in alternating steps:











LG = λstft−magLstft−mag + λcorrLcorr + λphaseLphase

+ λfmapLfmap + λadvLAdv(G;D) + λKLLKL,

LD = LAdv(D;G),

(3)

where λ{·} are hyperparameters that control the relative impor-

tance of each loss component.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

Our model is trained on a combination of large-scale public datasets

and a high-quality, proprietary in-house dataset. The training process

is conducted in two stages: pre-training and continue-training. First,

we use a diverse mix of public data including FSD50K [13], FMA

[14], and DISCO-10M [15]. Subsequently, for the continue-training

stage, the model is trained on our in-house dataset of approximately

10,000 hours of professionally produced music.

4.2. Data Pipeline

To ensure data quality, we designed a two-stage filtering pipeline,

applied progressively. All datasets undergo Stage 1 for format stan-

dardization, while only our in-house data is subjected to the full

pipeline.

Stage 1: Format and Loudness Standardization All the files

are formatted to 44.1 kHz stereo, with files natively sampled below

this rate being discarded. Next, we filter based on perceived loud-

ness. Using the LUFS-I metric [16], we retain only tracks with an in-

tegrated loudness between -22 and -5 LUFS, removing acoustically

extreme examples.

Stage 2: True Peak Filtering For our in-house data, we filter

true peak levels less than +1dB to handle signal clipping. Different

from the any-clip-rejection strategy from Encodec [6], this lenient

criterion is deliberately chosen to accommodate the moderate, inten-

tional clipping common in modern music mastering.

4.3. Training Details

The ϵar-VAE achieves a 1024x compression rate via a 5-layer con-

volutional encoder/decoder structure with strides [2, 4, 4, 4, 8] and a

128-dimensional latent space. The decoder is augmented with two

transformer layers using RoPE. The multiscale discriminator uses

STFT window sizes of [2048, 1024, 512, 256, 128]. The full model

contains 141M parameters.

We train all models on 8 A100 GPUs using the AdamW opti-

mizer with a learning rate of 3 × 10−4, β1 = 0.5, and β2 = 0.9.

The loss weights are set as follows: λstft−mag = 50, λcorr = 10,

λphase = 10, λfmap = 20, λadv = 1, and λKL = 10−6 for recon-

struction.

We train the model for a total of 2M steps over three distinct

phases:

Phase 1: Warm-up (10k steps) We train only the generator

using the STFT and KL losses, accompanied by a linear learning

rate warm-up.

Phase 2: Pre-train (1M steps) On the public datasets, we ac-

tivate all loss components and train the generator and discriminator

alternately. The learning rate is halved at 200k, 400k, and 600k steps.

Phase 3: Continue-train (1M steps) We continue training on

our in-house dataset using the same full loss configuration and alter-

nate training scheme as in Phase 2, with a constant learning rate.

4.4. Results

4.4.1. Novel Evaluation Metrics

To evaluate phase accuracy, we introduce two custom metrics, Indi-

vidual Channel Phase Coherence and Cross Channel Phase Coher-

ence.

Individual Channel Phase Coherence (ICPC) ICPC quanti-

fies the stability of phase errors within each channel. It is derived by

first computing the phase error ∆ϕ(f, t) at each time-frequency bin,

with magnitude-based weighting applied to mitigate the influence of

noise. For each time frame, a coherence score Ct is calculated as the

mean resultant length of these weighted phase error phasors. The

final ICPC score is the energy-weighted average of these per-frame

scores, where the energy Et for each frame is the sum of its corre-

sponding weights.

ICPC =

∑

t
Ct · Et

∑

t
Et + ϵ

. (4)

Cross Channel Phase Coherence (CCPC) CCPC extends

this concept to stereo signals by measuring the preservation of the

Inter-channel Phase Difference (IPD). Its calculation follows the

same principle as ICPC, but is based on the error in the IPD in-

stead of the single-channel phase error. The final score is similarly

the energy-weighted average across time, where the frame energy

Einter,t is the sum of the corresponding inter-channel weights.

CCPC =

∑

t
Cinter,t · Einter,t

∑

t
Einter,t + ϵ

. (5)



Table 1. Results on MuChin and In-house validation split (side-by-side comparison).

Model
Channels/

Rate (Hz)

Latent

Rate

MuChin In-house validation

Mel

dist
↓

STFT

dist
↓ ICPC↑ CCPC↑ SI-SDR↑

dbTP

dist
↓

Mel

dist
↓

STFT

dist
↓ ICPC↑ CCPC↑ SI-SDR↑

dbTP

dist
↓

DAC 1/44.1k 86Hz 0.71 1.33 94.25% 90.69% 6.14 0.29 0.67 1.21 94.49% 90.47% 6.68 0.35

Encodec 2/48k 50Hz 0.84 1.57 89.89% 89.34% 3.64 0.10 0.80 1.49 90.07% 89.42% 3.99 0.14

AGC 2/48k 100Hz 0.71 1.46 94.70% 94.96% 7.58 0.27 0.65 1.39 94.16% 94.66% 8.21 0.09

SAO 2/44.1k 21.5Hz 0.75 1.64 90.70% 91.41% 4.62 0.29 0.64 1.34 90.37% 91.12% 5.23 0.36

ϵar-VAE 2/44.1k 43Hz 0.55 1.17 96.78% 96.81% 9.99 0.05 0.55 1.12 96.66% 96.52% 11.00 0.05

Fig. 4. All Ablation Study

4.4.2. Evaluation Setting

We evaluate performance using several objective metrics, pri-

marily sourced from the auraloss library [17]: Multi-Scale STFT

(MS-STFT) distance, Multi-Scale Mel (MS-Mel) distance, and SI-

SDR. The multiscale metrics were configured with FFT sizes of

[4096, 2048, 1024, 512, 256, 128] and a hop size of one-quarter the

window size. Additionally, we measure the True Peak loudness

difference (dbTP) using FFmpeg [18] and the designed metrics in

section 4.4.1.

We compare ϵar-VAE against several leading audio reconstruc-

tion models: EnCodec, DAC, AudioGen (AGC), and Stable-Audio-

Open (SAO). The evaluation is performed on the reconstruction of

test sets from the MuChin [19] and our in-house validation datasets.

Detailed results are presented in table 1.

4.5. Ablation Study

Our design choices are validated through a series of ablation studies,

with qualitative results visualized in figure 4, which compares recon-

structed spectrograms from various model configurations against the

ground truth.

Impact of Architectural Components The top panel of fig-

ure 4 highlights the role of the transformer layers. Without them, the

model fails to reconstruct fine-grained harmonic structures above 10

kHz, confirming that the transformer’s self-attention is crucial for

modelling long-range frequency dependencies, complementing the

convolutional layers’ feature extraction.

Impact of Perceptual and Phase-related Losses The left

and bottom panels demonstrate the effects of our proposed loss

functions. As shown in the left panel, removing the K-weighting

pre-filter results in a suboptimal reconstruction, particularly in the

critical mid-to-high frequency bands, while the A-weighting curve

improperly attenuates high frequencies. The bottom panel illustrates

that removing the phase-related losses leads to a loss of clarity and

the introduction of audible ”current-like” noise. Specifically, the

Phase Loss ensures local phase smoothness, while the Correlation

Loss contributes to enhances spectral coherence, particularly for

polyphonic elements.

Impact of Stereo and Spectral Representation Our ablation

results reveal a key principle in stereo supervision. For magni-

tude, supervision over all four components—left, right, mid, and

side—provides a more complete guidance signal for stereo recon-

struction. In contrast, phase supervision should be restricted to

the pure left/right mode. Incorporating mid/side components into

phase losses distorts the physically meaningful Inter-aural Phase

Difference (IPD) cues, thereby introducing spatial artifacts.

5. CONCLUSION

In this paper, we present ϵar-VAE, a variational autoencoder that sets

a new state-of-the-art for high-fidelity music reconstruction. Our ab-

lation studies confirm that the carefully designed components, in-

cluding novel perceptual and phase-based losses, contribute signif-

icantly to the superior performance. Furthermore, We believe that

addressing the model’s tendency to attenuate subtle spatial effects

by exploring targeted loss functions remains a promising research

direction and tackling these challenges will unlock the next genera-

tion of controllable and realistic generative music models.
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